Flow Diagrams for Grain Handling Functions

Allan Tedrow
Sales Executive
McCormick Construction

Automation by Brad Lansink
COMCO Controls
Goals for This Lecture

• Introduce flow diagrams for whole-grain handling, storing, drying, and cleaning

• Follow a flow diagram to see processes, functions and steps with their corresponding relationships

• Identify how process changes affect the flow of the grain

• Identify potential compromises in safety

• Identify how flow diagram ties directly to physical layout.
Facility Background

• Inland grain terminal

• Increase the receiving and load out rates

• Ability to handle corn, soybeans, wheat and milo

• Able to segregate grains

• Capacity
 • Storage capacity 564,000 bushels
 • Complex storage capacity 4.2 million bushels
Facility Background (cont.)

- Truck receiving to rail loading facility

- Unit train loading facility
 - Union Pacific Railroad
 - 110 cars to a unit train
 - 4000 bushels per train car (440,000 bushels total for the unit train)
 - Track layout at load point allows 25 cars to a string of cars
Typical Line Flow
Physical Layout at Grade

Pit #1

Pit #2
Typical Receiving Season

• Wheat
 • June: south and west
 • August (late) and September: northern states

• Corn and Beans
 • Beans come out first, then corn but these often come out at the same time
 • Start about September 1 and will go into November
Overlap Between Crops

• Harvest vs. Facility

• Examples
 • Southern Illinois – wheat, corn and soybeans
 • Eastern Kansas – late wheat, milo, soybeans and corn
Typical Line Flow
Legend and Grain Handling Terms

Legend

- **Motion Sensor**
- **Diverter Valve**
- **Level Indicator**
- **Fan**
- **Scale**
- **Gate (C/%)**
- **Gate (Manual)**
- **Enclosed Belt**
- **Plug Switch**
- **Temp. Cable**

EQUIPMENT ITEM NUMBER
- **Equipment Number**
- **Equipment Area Classification**
 - 1XX = Receiving System
 - 2XX = Storage System
 - 3XX = Reclaim System
 - 4XX = Drying System
 - 5XX = Loadout System
 - 6XX = Filter System
 - 7XX = Miscellaneous System
- **Equipment Letter Abbreviation**
 - AD = Arm Drive
 - AF = Aeration Fan
 - AR = Airlock
 - BF = Bin Filter
 - BL = Blower
 - BS = Bin Sweeper
 - BW = Bulk Weigher
 - CB = Conveyor Belt
 - CD = Conveyor Driv
 - CE = Conveyor Elevator
 - CS = Conveyor Screw
 - CT = Controls
 - DB = Dust Suppression Hopper
 - DI = Divider
 - DR = Dryer
 - DS = Distributor
 - DV = Diverter Valve
 - FF = Filter Fan
 - FP = Fall Protection
 - GE = Gate Electric
 - GH = Gate Hydraulic
 - GM = Gate Manual
 - GO = Grain Sampler
 - HL = High Level
 - LG = Lower Gatherer
 - LL = Low Level
 - LT = Level Transmitter
 - MG = Magnet
 - ML = Manlift
 - MS = Moisture Sensor
 - RF = Roof Fan
 - RS = Retractable Spout
 - SB = Surge Bin
 - SC = Screener
 - SP = Sampler
 - TC = Temp Cable
 - TP = Truck Probe
 - TS = Telescoping Spout
 - UG = Upper Gatherer
 - WF = Wall Fan
 - WS = Weigh Scale

General Notes:
1. Reference equipment list for motor HP & electrical.

Commodity

<table>
<thead>
<tr>
<th>Corn</th>
<th>Soybeans</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>45-48</td>
</tr>
</tbody>
</table>

Angle of Repose
- Corn: 21 degrees
- Soybeans: 21-28 degrees

Spouting Specifications

- Receiving System = 40 degree min. w/ urethane
- Reclaim / Loadout System = 40 degree min. w/ urethane
- Screenings Spout = 50 degree min. x 10 ga., unlined

- Spout Size from Bin = 65 bu./sq. in. per hour.
- Spout Size from Drag Conveyor = 70 bu./sq. in. per hour.
- Spout Size from Belt Conveyor or Leg = 70 bu./sq. in. per hour.
Receiving - Two Gravity Pits
Vehicles Received
Receiving - Conveyed Pits

- Alternative to gravity pits
- Allows hopper bottom truck to open either hopper without moving
- Conveyor required to reclaim and transfer to second conveyor going to legs
- Dust control system required
- Often utilized by processing facilities or port terminals
Receiving - Dust Control
Receiving - Cleaners and Top Distribution
Receiving - Cleaning

- Cleaning requirements
- Grain type to be cleaned
- Cleaning frequency
- Cleaned for
 - shipping or
 - in-house use
Receiving - Clean Grain, Better Quality

- Clean grain
 - Remove foreign material
 - Remove dust
 - Remove small particulates

- Better quality
 - Internationally: fines maximum percentage of 4%
 - Food processes: fines closer to 0%
Receiving - Bin Reclaim
Aeration of Bins

- Often used for longer term storage
- Rarely used in process bins or where bins are cycled often
- Aeration amount varies to the product being stored.
Receiving - Rail
Conveyed Receiving Rail Cars
Rail Load Out Bulk Weigh Scale
Sample and Quality Requirements
Scaling for Inventory
Material Handling Rates and How They Are Established

• How will we be receiving?

• How often do we receive?

• How many commodities will we be receiving?

• Are other functions happening at the same time as receiving?
Transfer Rate

- Determined by need
- Can transfer be done in off hours?
- Is transfer needed to support loading rate?
- Where is the transfer going to and coming from?
- Ability to transfer while receiving and/or loading are occurring
Temperature Detection

- Bin height
- Bin diameter
- Fill and empty frequency
- Flat floored or hopper bottom
Safety Devices and Function

- Slack chain
- Plug switch
- Bearing detection
- Alignment sensors
- High level
- Low level
Facility Limitations (cont.)

• Why duplication?
• Can equipment be substituted?
• Can equipment serve multiple uses?
Facility Limitations

• What can be taken out of service and not impact operations

• Can equipment be substituted?

• Alternatives if out of service for extended period

• How to get back in service
Service Needs

• If it is mechanical, electrical or built by humans it will break.

• **SAFE** access to all components, even sensors and small motors

• Access needs to be safe, allowing for tie-off if required

• Maintain company safety standards
Example of Service Requirement: Receiving Leg Motor

- Where is this located?
- Can I service this safely?
- What do I do if this needs replacement?
- What else is in this area that needs service?
When To Modify the Flow

- Grain flow is modified
- Equipment change
- Equipment modification (sped up or slowed down)
- A process is added to facility
- Regulatory change (i.e. dust standard is changed)
- New ownership
Complex Facility Mandates a Complex Flow
Complex Facility Layout
Relating Flow to Physical Structure
Summary

• The flow diagram is our road map to the facility. It coordinates how the grain should flow and dictates the design of the facility and sizing of the equipment.

• Understanding how grain flows through a facility helps employees in their understanding of when things are working properly.

• The flow can and should be used for new employee training as to how things should work and if not why they are not.
Acknowledgements

The development of this course module was made possible through support from:

• Grain Elevator and Processing Society (GEAPS)

• Kansas State University’s Department of Grain Science & Industry and the IGP Institute

• Kansas State University’s Global Campus

• Allan Tedrow, Sales Executive, McCormick Construction, 515-230-2748

• allant@mccormickconstruction.com