“Inspection & Maintenance of Concrete Facilities”
By Cheyenne Wohlford
Introduction

- Most Grain Elevators were built between 1950 and 1960 with a life expectancy of 30 years.
- **Operational changes since 1960** include:
 - Increase in turn rate
 - Decrease in unloading and loading time
- **Deterioration** occurs with:
 - Normal wear & tear
 - Exposure to weather
 - Structural deficiencies/failures
- **Construction Flaws, New Builds?**
 - Rebar laps, spacing
 - Concrete PSI Strength
How can you better assess the repair needs of your facility?

Understand the following:

1. Importance of Preventative Maintenance
2. Site Inspection Expectations
3. Reporting - What does this include?
4. Types of Repairs
1. Importance of Maintaining a Facility

Concrete Deterioration Rates:
- Slow in the beginning
- Increase RAPIDLY over time

Factors to Consider:
- Cost
 - Structural Repairs may cost 10 times more than preventative maintenance per silo.
- Downtime
 - Preventative Maintenance = None
 - Structural Repairs = Multiple weeks
- Safety Concerns
 - Falling concrete hazards
 - Potential increases in recordable injuries and workers’ compensation costs.
2. Site Inspection Expectations

What is the purpose of a site inspection?

Gather information:
- Structural History
- Client Expectations
- Areas of Concern
Benefits of obtaining original blue prints:

• Prompt the inspection of an otherwise overlooked area

• Offer explanations of suspect areas or failures
Client Visit

Clients may possess undocumented info:
• Years of operation
• Utilization of specific components
• Turn rates

Client Expectations:
• What information does a client expect to gain from an inspection?
• Should all areas of concern be addressed?
Exterior Inspection Areas

- Silo Walls
- Apex Walls
- Roofs
- Beam Pockets
- Cornices
- Bulging Areas
- Wall Penetrating Equipment
- Noticeable Changes
Exterior Inspection Areas

- Silo Walls
- **Apex Walls**
- Roofs
- Beam Pockets
- Cornices
- Bulging Areas
- Wall Penetrating Equipment
- Noticeable Changes
Exterior Inspection Areas

- Silo Walls
- Apex Walls
- Roofs
- Beam Pockets
- Cornices
- Bulging Areas
- Wall Penetrating Equipment
- Noticeable Changes
Exterior Inspection Areas

- Silo Walls
- Apex Walls
- Roofs
- **Beam Pockets**
- Cornices
- Bulging Areas
- Wall Penetrating Equipment
- Noticeable Changes
Exterior Inspection Areas

• Silo Walls
• Apex Walls
• Roofs
• Beam Pockets
• Cornices
• Bulging Areas
• Wall Penetrating Equipment
• Noticeable Changes
Exterior Inspection Areas

• Silo Walls
• Apex Walls
• Roofs
• Beam Pockets
• Cornices
• Bulging Areas
• Wall Penetrating Equipment
• Noticeable Changes
Interior Inspection Areas

Connection Walls Hopper Slopes Aeration Hoppers
Discharge Spouts and Holes Roof Beams and Connections
Grain Bridging or Caulking Moisture Marking
Exterior Inspection Areas

- Silo Walls
- Apex Walls
- Roofs
- Beam Pockets
- Cornices
- Bulging Areas
- **Wall Penetrating Equipment**
- Noticeable Changes
Inspection of Concrete Cracks

Necessary Observations:
- Direction
- Width
- Depths
Concrete Crack Activity

Active Cracks – grow in depth, width, or direction

Dormant Cracks – No growth

All cracks allow moisture to penetrate concrete pores.

Deterioration is dependent upon weather
- Warm weather = allows concrete to hydrate
- Cold weather = water in concrete pores freezes and may cause damage and spalling
Why is moisture migration a problem?

Water expands 9% by volume during freezing process
Rebar can expand 600% of its original volume
• Exerts a force on concrete
• Causes tiny cracks
• When ice thaws, water fills new cracks
• Process is repeated throughout cold weather months
Types of Concrete Cracks

Offset Cracks – cracks with different elevations
Types of Concrete Cracks

Capital “H” Cracks
Types of Concrete Cracks

Horizontal

Vertical
Site Inspection Testing

Nondestructive Testing:

• GPR Scans
• PSI Concrete Tests
• Concrete Moisture Tests
• Surface Profiling
Ground Penetrating RADAR

RADAR = Radio Detection and Ranging
- 2 & 3 Dimensional Scans
- Determines:
 - Spacing
 - Concrete Coverage
 - Wall Thickness
<table>
<thead>
<tr>
<th>Elevation (feet)</th>
<th>Steel Orientation</th>
<th>Average Spacing (inches)</th>
<th>Average Coverage (inches)</th>
<th>Average PSI Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>110'</td>
<td>Vertical</td>
<td>14.4</td>
<td>2.09</td>
<td>3920</td>
</tr>
<tr>
<td></td>
<td>Horizontal</td>
<td>15.7</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>95'</td>
<td>Vertical</td>
<td>16.65</td>
<td>2.85</td>
<td>3920</td>
</tr>
<tr>
<td></td>
<td>Horizontal</td>
<td>11.53</td>
<td>1.58</td>
<td></td>
</tr>
<tr>
<td>80'</td>
<td>Vertical</td>
<td>15.2</td>
<td>1.97</td>
<td>3710</td>
</tr>
<tr>
<td></td>
<td>Horizontal</td>
<td>13.32</td>
<td>1.64</td>
<td></td>
</tr>
<tr>
<td>65'</td>
<td>Vertical</td>
<td>16.15</td>
<td>2.50</td>
<td>3920</td>
</tr>
<tr>
<td></td>
<td>Horizontal</td>
<td>12.18</td>
<td>1.56</td>
<td></td>
</tr>
<tr>
<td>50'</td>
<td>Vertical</td>
<td>14.75</td>
<td>2.14</td>
<td>3815</td>
</tr>
<tr>
<td></td>
<td>Horizontal</td>
<td>14.45</td>
<td>3.23</td>
<td></td>
</tr>
<tr>
<td>35'</td>
<td>Vertical</td>
<td>13.45</td>
<td>1.88</td>
<td>3815</td>
</tr>
<tr>
<td></td>
<td>Horizontal</td>
<td>11.5</td>
<td>1.36</td>
<td></td>
</tr>
<tr>
<td>22' (Roof Level)</td>
<td>Vertical</td>
<td>11.86</td>
<td>2.15</td>
<td>3710</td>
</tr>
<tr>
<td></td>
<td>Horizontal</td>
<td>22.87</td>
<td>3.30</td>
<td></td>
</tr>
</tbody>
</table>
Non-destructive Tests

Concrete PSI tests = measures concrete strength in a given area
- Must follow ASTM C805 Guidelines.

Concrete Moisture Tests = measures concrete moisture content
used to interpret Moisture Migration
Surface Profiling

Scale of 1 to 12 - Roughness of concrete increases with scale number
Determines if concrete is suitable for Carbon Fiber repairs
Destructive Testing

Performed at the request of the customer or third party engineer if non-destructive tests are inconclusive.

Types:

• Concrete Core Sampling - Used to finalize data when concrete PSI tests are inconclusive

• Exposure of Reinforcement Steel - Determines corrosion and cross-section loss. Caliper tool measures remaining rebar width.

• Concrete Carbonation Testing
 - Concrete naturally protects Reinforcement Steel
 - Over time a reaction occurs with atmospheric carbon dioxide & sulfur dioxide reducing the pH level of concrete
 - Carbonation Testing measures if concrete is above or below a pH of 9.2
3. Reporting

Essential way of compiling all findings from a site inspection

Two Sections

• Findings:
 • Testing data
 • Areas of Concern
 • Requests for further testing

• Recommendations
 • Immediate Action
 • Future Needs
 • Monitoring Schedule

Sharing of report with Third Party Engineer

• Allows for engineer verification
• Prevents unnecessary repairs
4. Types of Repairs

- Concrete Crack Injection
- Concrete Spalling Repair
- Carbon Fiber Applications
 - Beam Pockets
 - Roof Caps
 - Entry Points
 - Cold Joints
- Shotcrete/Gunite Liners
Concrete Crack Injection

Crack Injection prevents growth

3 Step Process for cracks larger than .06 inches or 1/16th of an inch
1. Grind out crack $\frac{1}{4}$” x $\frac{1}{4}$”
2. Remove debris with air or water
3. Injection with a high-yield, non-shrink, elastomeric caulk
Concrete Spalling Repair

5 Step Process based upon ICRI No. 310.1R-2008

1. Removal of all delaminated concrete including ¼” around exposed rebar
2. Clean rebar to white metal
3. Right angle cut spalled area
4. Treat rebar with Rust Inhibitor
5. Patch with high strength, vertical-overhead concrete patch
Carbon Fiber Applications

• Beam Pocket Repairs

• Roof Caps

• Wall Penetrating Equipment Entry Points

• Cold Joints
Carbon Fiber Applications

Beam Pocket Repairs
Carbon Fiber Applications

Cold Joint Repairs
Steel Reinforced Shotcrete/Gunite Liners

- Add new, structurally sound silo wall
- Uses existing wall as concrete form
- Minimal storage capacity loss (4-5” of Liner Thickness)
Questions & Answers
1-855-752-5047