New Official Moisture Technology

David B. Funk, Ph.D., Chief Scientist
Federal Grain Inspection Service
August 1, 2012
History of Official Moisture Meter Approvals

• 1937 – Tag-Heppenstall
• 1960 - Motomco Model 919
• 1998 - Dickey-john GAC 2100
• April 11, 2012 – First UGMA-Compatible moisture meters approved
 — DICKEY-john GAC 2500UGMA
 — Perten AM 5200-A.
GIPSA-Certified UGMA-Compatible Moisture Meters

Dickey-john GAC 2500UGMA Perten AM 5200-A
What is GIPSA’s Unified Grain Moisture Algorithm (UGMA)?

- Very accurate dielectric-type moisture method
- Higher measurement frequency (about 150 MHz)
- Based on a defined physical parameter—Dielectric Constant
- Excellent density correction
- Three “unifying parameters” per grain group
- A single calibration “curve” for all grain types
- Precise, wide-range temperature correction
- Calibrated to GIPSA’s standard Air Oven method
- “Open”—Available to any manufacturer
Eureka! #1: Effectiveness of the Landau-Lifshitz, Looyenga Density Correction

LLL_Exponent = 0
SEC = 1.396

Density Correction--Corn @ 149 MHz

Air Oven Moisture (%wb) vs. Density-Corr. Dielectric Constant
Eureka! #2: Geometrically-Similar Shapes in VHF Range
Landau-Lifshitz, Looyenga
Density Normalization
Adjust Slope Parameter for Slope of 6.0 %M per unit dielectric constant in 10-20 % Range
Adjust Offset Parameter
Adjust Translation Parameter
5th-Order Polynomial Equation

Number of Samples = 6189
Overall SEC = 0.34 % Moisture
Unified Grain Moisture Algorithm

- **Grain Sample**
 - **Z⁺ or Γ⁺ Sensor**
 - **Density Correction**
 - **Unifying Parameters**
 - **Temperature Correction**
 - **Moisture Result**

- **Instrument Parameters**
 - **Mass Sensor**
 - **Sample Corrections**
 - **Secondary Corrections**

- **Test Cell Parameters**
 - **Cell Volume**
 - **Z, d, etc.**

- **Polynomial Coefficients**

- **User**
 - **Manufacturer**
 - **GIPSA**

- **SFG or ABCD Model**

- **Density Correction**
 - **εdensity corrected**

- **Unifying Parameters**
 - **εunified**

- **Temperature Correction**
 - **%M**

- **Temp. Corr. Parameters**
 - **GROUP ID**

- **Type-Group Table**

- **Instrument Parameters**
 - **Effective**

- **D.B. Funk**
 - **November 9, 2006**
Why change to UGMA?
Improved Accuracy for All Grain Types

2011 Corn Crop

GAC 2100

UGMA
Improved Accuracy of UGMA

The graph shows the variability (SDD % Moisture) for different crops compared to air oven readings. The crops include Corn, Soybeans, Sorghum, Sunflower, Rice (Long Rough), and Rice (Medium Rough). Two methods are compared: GAC 2100 vs. Air Oven and UGMA Master vs. Air Oven.
Improved Accuracy of UGMA

The graph shows the variability in percent moisture for different types of grains compared to a reference. The categories include:
- Wheat, Hard
- Wheat, Red
- Wheat, Winter
- Durum
- Barley
- Oats

The graph compares two methods:
- GAC 2100 vs. Air Oven
- UGMA Master vs. Air Oven
Improved Year-to-Year Calibration Stability
Corn

GAC 2100

UGMA

FEDERAL GRAIN INSPECTION SERVICE
Sunflower

GAC 2100

UGMA

Legend: 1 yr, 3 yr
Soft Red Winter Wheat

GAC 2100

UGMA

1 yr

3 yr
Drastically Improved Accuracy on High and Low Test Weight Corn
GAC 2100 Corn Results—Density Issue
Accuracy for 2007-2009 Crops

For range: 10-36% M
Samples: 686
Std. Dev. of Diff: 0.70% M

Low TW samples yielded low moisture results.
The drastic change in test weight with moisture for normal corn presents special challenges for density correction of corn moisture measurements.
Secondary Density Correction
Corn Results for UGMA

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bias</td>
<td>-0.04</td>
<td>-0.01</td>
</tr>
<tr>
<td>STD</td>
<td>0.46</td>
<td>0.31</td>
</tr>
<tr>
<td>Slope</td>
<td>-0.01</td>
<td>-0.01</td>
</tr>
</tbody>
</table>

All Samples

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bias</td>
<td>-0.66</td>
<td>-0.11</td>
</tr>
<tr>
<td>STD</td>
<td>0.34</td>
<td>0.32</td>
</tr>
<tr>
<td>Slope</td>
<td>0.00</td>
<td>-0.03</td>
</tr>
</tbody>
</table>

Normal

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bias</td>
<td>0.09</td>
<td>0.01</td>
</tr>
<tr>
<td>STD</td>
<td>0.36</td>
<td>0.30</td>
</tr>
<tr>
<td>Slope</td>
<td>-0.04</td>
<td>-0.01</td>
</tr>
</tbody>
</table>

Low Density

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bias</td>
<td>-0.04</td>
<td>-0.01</td>
</tr>
<tr>
<td>STD</td>
<td>0.46</td>
<td>0.31</td>
</tr>
<tr>
<td>Slope</td>
<td>-0.01</td>
<td>-0.01</td>
</tr>
</tbody>
</table>

Air Oven Moisture, %M

Moisture Prediction Error, %M

Before Correction

After Correction

+++ Normal Corn

红circle Low Density Corn

Federal Grain Inspection Service
Wider Sample Temperature Ranges

GAC 2100

32 °F

103 °F

113 °F

0 °F

UGMA Meters
"Green" Grain Effects Reduced

Long Grain Rough Rice Rebound

Moisture Error due to Rapid Drying (%)

Moisture Content of the Dried Sample, M %
“Green” Grain Effects Reduced

LGRR Mixture Effects

Error due to Mixture of Wet and Dry Rice (%)

Moisture Content of the Wet Component, M %

GAC 2100
UGMA
“Green” Grain Effects Reduced

Effects of Mixtures of Wet and Dry Soybeans

Moisture Error due to Mixture (%)

Moisture of Wet Component of Mixture (%)

+ + + GAC 2100
O O O UGMA

USDA
GIPSA’s Basic Definition of Equivalency

• Same technology
• Very close agreement among types as well as units of a type
• Same calibrations and standardization processes
UGMA-Compatibility Criteria (1)

- NTEP Certification
- Documented & stable production processes
- Measurement frequency
- Standardized test cell design
- Standardized loading method
- Standardized measurements
 - Sample dielectric constant
 - Sample mass
 - Sample temperature
UGMA-Compatibility Criteria (2)

• Tight tolerances specified for individual subsystems as well as moisture results
• Must use specified mathematics
• Units’ agreement with FGIS Master system must meet tolerances in FGIS Regulations
 – +/- 0.05% M for Headquarters Standard units
 – +/- 0.15% M for other Official units
 – Mean difference on medium-moisture HRWW
UGMA-Compatibility Criteria (3)

• All UGMA-Compatible models must be able to use the same check testing process.

• A simple check testing process must ensure performance on all grains over full moisture ranges.

• Instruments must provide for efficient means of entering calibrations.

• Instruments must provide standardized output data stream for printing or networking.
Excellent Agreement Between UGMA Models

![Graph showing variability in percent moisture for different crops and models.](image)
Excellent Agreement Between UGMA Models

Check Testing Tolerance for Official Moisture Meters

Variability (SDD %Moisture)

- Wheat, Hard
- Wheat, Hard Red
- Wheat, Hard Red Winter
- Wheat, Soft Red
- Wheat, Soft White
- Wheat, Soft Winter
- Durum
- Barley
- Oats

GAC2500 vs AM5200
UGMA Unit to Unit
Far Better Agreement Than Between Different Technologies
Far Better Agreement Than Between Different Technologies
UGMA Moisture Meter Implementation Schedule

September 1, 2012
• Corn
• Soybeans
• Sorghum
• Sunflower

May 1, 2013
• Wheat
• Barley
• Oats
• Rice (Rough and Processed)
• Edible Beans, Peas, Lentils
• Canola, Rapeseed, Mustard
• Flaxseed
• Safflower
• Triticale and Rye
Anticipated Moisture Changes with Transition to UGMA

- GAC 2100 and new UGMA –based meters are all calibrated to agree with GIPSA’s air oven method as closely as possible.
- Do not expect significant average differences between GAC 2100 and new UGMA-based meters—except:
 - Low test weight corn moisture values will generally increase:
 - GAC 2100 reads lower than UGMA by 0.2% per pound per bushel below 57 lb/bu
 - High test weight corn moisture values will generally decrease:
 - GAC 2100 reads higher than UGMA by 0.2% per pound per bushel above 57 lb/bu